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Abstract. Charge-stabilized colloidal suspensions can be conveniently described by formally
reducing the macroion–microion mixture to an equivalent one-component system of pseudo-
particles. Within this scheme, the utility of a linear response approximation for deriving effective
interparticle interactions has been demonstrated (Grimson M J and Silbert M 1991Mol. Phys.74
397). Here the response approach is extended to suspensions offinite-sizedmacroions and used
to derive explicit expressions for (1) an effective electrostatic pair interaction between pseudo-
macroions and (2) an associated volume energy that contributes to the total free energy. The
derivation recovers precisely the form of the DLVO (Derjaguin, Landau, Verwey, and Overbeek)
screened Coulomb effective pair interaction for spherical macroions and makes manifest the
important influence of the volume energy on thermodynamic properties of deionized suspensions.
Excluded-volume corrections are implicitly incorporated through a natural modification of the
inverse screening length. By including thenonlinearresponse of counterions to macroions, the
theory may be generalized to systematically investigate effectivemany-bodyinteractions.

1. Introduction

Charge-stabilized colloidal suspensions, composed of charged macroions (1–1000 nm in
diameter) and microions (counterions and salt ions) suspended by Brownian motion in a
molecular fluid, occur in a variety of natural and engineered forms [1]. Common examples
include clay minerals, paints, inks, and detergents (micellar solutions), in which repulsive
electrostatic interactions promote stability against coagulation induced by van der Waals
attractive forces. Somewhat more exotic are suspensions of synthetic latex or silica spheres
whose near monodispersity facilitates self-assembly into crystalline lattices [2]. Aside from
serving as well-characterized models for fundamental study, synthetic colloids exhibit unique
optical properties that underly several emerging technological applications, such as nanosecond
optical switches [3] and photonic band-gap materials [4].

Accurate prediction of the physical properties of colloidal matter relies on a fundamental
understanding of interparticle interactions. The first quantitative account of electrostatic
interactions was achieved by Derjaguin, Landau, Verwey, and Overbeek (DLVO) [5]. Based on
the Poisson–Boltzmann equation for the electrostatic potential [1], the DLVO theory portrays
the bare Coulomb interactions between macroions as effectively screened by a surrounding
atmosphere of microions. The resulting screened Coulomb pair potential has been a valuable
cornerstone of colloid science for half a century. Nevertheless, experimental evidence for
apparent long-range attractions between macroions [6] has contributed to renewed interest in
colloidal interparticle interactions.
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An explicit description of the multi-component mixture of macroions, counterions, salt
ions, and solvent molecules clearly poses a formidable challenge. Consequently, inter-
actions in such complex systems are usually treated at the level ofeffectiveinteractions.
Tracing out from the partition function the statistical degrees of freedom of all but a single
component reduces the problem to that of an equivalent one-component system of ‘pseudo-
particles’ governed by an effective thermodynamic-state-dependent interaction [7]. A range
of theoretical and numerical methods have been developed to investigate effective interactions
in charge-stabilized colloids. Strategies deployed to date include Poisson–Boltzmann cell
models [8], Monte Carlo simulation [9, 10],ab initio simulation [11], and density-functional
theory [12–15]. Recently, Silbert and co-workers [16, 17] proposed an approach motivated
by analogies between charged colloids and metals. With the correspondences (counterion↔
electron) and (macroion↔metallic ion), the procedure is closely akin to the pseudopotential
theory of metals [18], which can successfully account for thermodynamic properties of simple
metals [19]. Performing a classical trace over microion degrees of freedom, and describing
the electrostatic response of the microions to the macroions within second-order perturbation
theory, results in an effective interaction between pseudo-macroionsandan associated volume
energy that contributes to the total free energy. The importance of including the volume energy
in calculating thermodynamic properties of charge-stabilized colloidal suspensions has been
emphasized recently by a number of authors [12–14,16,20].

The main purpose of this paper is to develop further the response approach to charge-
stabilized colloids, extending it, in particular, to suspensions of finite-sized macroions. The
proposed extensions enforce exclusion of microions from the macroion hard cores and
explicitly take into account the volume excluded by the macroions to the microions. A second
goal of the paper is to establish a framework for generalizing the theory to include nonlinear
response to allow investigation of effectivemany-bodyinteractions. In the next section,
following a brief review of the response approach, the extensions are outlined. Section 3
presents the main results—obtained within a linear response approximation—for an effective
pair potential acting between pseudo-macroions and an associated volume energy, both of
which consistently incorporate excluded-volume effects. Finally in section 4, we discuss
implications of the results for thermodynamic properties of charge-stabilized colloids and
prospects for generalizing the theory beyond linear response.

2. Theory

2.1. The model

The theory described below is based on the ‘primitive’ model, wherein for simplicity the
solvent is treated as a uniform dielectric continuum. To simplify notation, it is furthermore
assumed that counterions are the only microions present (deionized suspension). The general
case of finite salt concentration will be addressed elsewhere [21]. The model system then
consists ofNm charged hard-sphere macroions of diameterσ and charge−Ze (e being the
elementary charge) andNc point counterions of chargeze suspended in a uniform fluid medium
characterized entirely by a dielectric constantε. Each macroion is assumed to carry a fixed
charge, uniformly distributed over its surface. Charge fluctuations are thus implicitly ignored
in the model. Described statistically by a canonical ensemble, the system occupies a fixed
total volumeV at temperatureT . For a given number of macroions, global charge neutrality
constrains the number of counterions according to the conditionzNc = ZNm.
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Denoting macroion and counterion positions byRi andri , respectively, the full Hamil-
tonian of the system can be expressed in the form

H = Hm +Hc +Hmc (1)

with the individual terms to be specified below. The first term on the right-hand side of
equation (1) is the bare macroion Hamiltonian, given by

Hm = Km +
1

2

Nm∑
i,j=1
(i 6=j)

[vHS(|Ri −Rj |) + vmm(|Ri −Rj |)] (2)

whereKm is the kinetic energy of the macroions,vHS(|Ri −Rj |) is a hard-sphere pair inter-
action between the macroion cores, andvmm(r) = Z2e2/εr is the bare Coulomb interaction
between a pair of macroions whose centres are separated by a distancer > σ . The second
term in equation (1) is a counterion Hamiltonian, taking the form

Hc = Kc +
1

2

Nc∑
i,j=1
(i 6=j)

vcc(|ri − rj |) +
Nc∑
i=1

Nm∑
j=1

vHS(|ri −Rj |) (3)

whereKc is the counterion kinetic energy,vcc(r) = z2e2/εr is the Coulomb interaction
between a pair of counterions, andvHS(|ri − Rj |) is the hard-sphere interaction between a
point counterion and a macroion core. Finally, the third term in equation (1) is the electrostatic
interaction energy between the macroions and counterions:

Hmc =
Nc∑
i=1

Nm∑
j=1

vmc(|ri −Rj |) (4)

wherevmc(r) denotes the macroion–counterion electrostatic pair interaction. Outside the
macroion core radius,vmc(r) has the Coulomb form. Inside the core, however,vmc(r) is not
uniquely defined. Thus, following van Roij and Hansen [12], wechoosevmc(r) to be a constant
for r < σ and take

vmc(r) =


−Zze2

εr
r > σ/2

−Zze2

εσ/2
α r < σ/2

(5)

where the parameterα will be specified (section 3.1) in such a way as to ensure that the
counterion density vanishes within the core, as physically it must.

2.2. Reduction to an equivalent one-component system

Having defined the Hamiltonian, we now turn to a statistical mechanical description, with the
ultimate aim of calculating the free energy of the system. The partition function is given by

ZN =
〈〈exp(−H/kBT )〉c

〉
m (6)

the angular brackets symbolizing classical traces over macroion or counterion degrees of
freedom. Following standard treatments developed first in the context of simple metals [19,22],
we proceed by reducing the two-component mixture of macroions and counterions to an
equivalent one-component system. The reduction is achieved by performing a restricted trace
over counterion coordinates, while keeping the macroion coordinates fixed. Thus, without
approximation in this purely classical system,

ZN = 〈exp(−Heff/kBT )〉m (7)
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whereHeff ≡ Hm + Fc is the effective Hamiltonian of a one-component system of pseudo-
macroions, and where

Fc ≡ −kBT ln
〈
exp

[
−(Hc +Hmc)/kBT

]〉
c

(8)

may be physically interpreted as the free energy of a nonuniform gas of counterions in the
presence of macroions fixed at positionsRi . In general, the counterion free energy is a
complicated many-body function of the macroion positions. Progress can be made, however,
by formally adding to and subtracting fromH a term,Eb, representing the energy of a uniform
compensating negative background. ThenFc may be expressed in the form

Fc = −kBT ln
〈
exp

[
−(H ′c +H ′mc)/kBT

]〉
c

(9)

whereH ′c ≡ Hc + Eb andH ′mc ≡ Hmc− Eb. The advantage of this manipulation is thatH ′c
is simply the Hamiltonian of a classical one-component plasma (OCP) of counterions in the
presence ofneutralhard-sphere macroions.

Now the counterions, being excluded by the hard cores of the macroions, occupy thefree
volumeVf ≡ V − Nm(π/6)σ 3, i.e., the volume not occupied by the macroion cores. The
averageeffectivedensity of counterions is therefore given by

nc = Nc/Vf = n(0)c /(1− η)
wheren(0)c ≡ Nc/V is thenominalcounterion density andη ≡ (V − Vf )/V is the macroion
volume fraction. An important question now arises. What volume should the background
occupy? In order thatH ′c truly be the Hamiltonian of an OCP, the background and counterions
clearly must occupy the same volume. In fact, were the background to occupy a different
volume (e.g., the total volumeV ) then the effective Hamiltonian would contain terms that
are formally infinite (see below), although identically cancelling, associated with the long-
range Coulomb interaction. Thus, the background is taken to be excluded—along with the
counterions—from the macroion cores, its density equalling the effective counterion densitync.

The background energy is then given explicitly by [22]

Eb = −1

2
n2

c

∫
Vf

dr
∫
Vf

dr′
z2e2

ε|r − r′| = −
1

2
Ncncv̂cc(0) (10)

where

v̂cc(0) =
∫
Vf

dr
z2e2

εr
= lim

k→0

(
4πz2e2

εk2

)
(11)

is thek→ 0 limit of the Fourier transform ofvcc(r). The infinity arising fromEb will be seen
below to be formally cancelled by an identical infinity inHmc.

2.3. Linear response approximation

Thus far, the theory is exact, within the primitive model. The challenge lies ahead in calc-
ulating the counterion free energy (equation (8)). One proposed approach [12] invokes
density-functional theory to approximateFc, regarded as a functional of the counterion density,
by expanding in a functional Taylor series about a uniform counterion OCP. An alternative
strategy [16, 17], inspired by the pseudopotential theory of metals, is to formally regardH ′mc
as an ‘external’ potential acting upon a counterion OCP and approximateFc by perturbation
theory. Following the latter strategy [22], we write

Fc = FOCP +
∫ 1

0
dλ

〈
H ′mc

〉
λ

(12)
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where

FOCP= −kBT ln
〈
exp(−H ′c/kBT )

〉
c (13)

is the free energy of the reference counterion OCP, occupying a volumeVf , in the presence of
neutral hard-sphere macroions. The integral overλ in equation (12) physically corresponds to
an adiabatic charging of the macroions from neutral to fully charged spheres. The ensemble
average〈 〉λ represents an average with respect to the distribution function of a system whose
macroions are identically configured but carry a chargeλZ.

Further progress is facilitated by expressing
〈
H ′mc

〉
λ

in terms of Fourier components of the
macroion and counterion densities and of the macroion–counterion interaction, according to〈
H ′mc

〉
λ
= 1

Vf

∑
k 6=0

v̂mc(k)
〈
ρ̂c(k)

〉
λ
ρ̂m(−k) +

1

Vf
lim
k→0

[
v̂mc(k)

〈
ρ̂c(k)

〉
λ
ρ̂m(−k)

]
− Eb. (14)

Evidently
〈
H ′mc

〉
λ

depends througĥρc(k) upon the response of the counterions to the macroion
charge density. Regarding the macroion charge as imposing an external potential on the
counterions, the counterion density may be expressed in the form [23]

ρ̂c(k) = χ(1)(k)v̂mc(k)ρ̂m(k) +
1

Vf

∑
q

χ(2)(q,k − q)v̂mc(q)v̂mc(|k − q|)ρ̂m(q)ρ̂m(k − q)

+ · · · (15)

whereχ(i) is theith member of a hierarchy of response functions of the reference counterion
OCP. Here, as in reference [16], we adopt the simplest nontrivial approximation and assume
that the counterions respondlinearly to the macroion charges. Although its range of validity
is uncertain, linearization is expected to be justified for sufficiently dilute suspensions and
weakly charged macroions. Thus we take〈

ρ̂c(k)
〉
λ
= χ(k)λv̂mc(k)ρ̂m(k) k 6= 0 (16)

whereχ(k) ≡ χ(1)(k) is the linear response function. Note that fork = 0 there is no response,
sinceρ̂c(0) = Nc is fixed by the number of counterions. Substituting equations (16) and (14)
into equation (12) and integrating overλ, the counterion free energy is given to second order
in the macroion–counterion interaction by

Fc = FOCP +
1

2Vf

∑
k 6=0

χ(k)
[
v̂mc(k)

]2
ρ̂m(k)ρ̂m(−k) + nc lim

k→0

[
Nmv̂mc(k) +

Nc

2
v̂cc(k)

]
. (17)

Correspondingly, the effective Hamiltonian takes the form

Heff = Km +
1

2

Nm∑
i,j=1
i 6=j

vHS(|Ri −Rj |) +
1

2Vf

∑
k

v̂mm(k)
[
ρ̂m(k)ρ̂m(−k)−Nm

]

+ FOCP +
1

2Vf

∑
k

χ(k)
[
v̂mc(k)

]2
ρ̂m(k)ρ̂m(−k)

+ nc lim
k→0

[
−zNm

2Z
χ(k)

[
v̂mc(k)

]2
+Nmv̂mc(k) +

Nc

2
v̂cc(k)

]
. (18)

Notice, however, that equation (18) may be restructured and written in the form

Heff = Km +
1

2

Nm∑
i,j=1
i 6=j

vHS(|Ri −Rj |) +
1

2Vf

∑
k

v̂eff(k)
[
ρ̂m(k)ρ̂m(−k)−Nm

]
+E0

= Km +
1

2

Nm∑
i,j=1
i 6=j

[
vHS(|Ri −Rj |) + veff(|Ri −Rj |)

]
+E0 (19)
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where

v̂eff(k) = v̂mm(k) + v̂ind(k) (20)

may be interpreted as aneffectiveelectrostatic pair potential between pseudo-macroions, being
the sum of the bare Coulomb potential and aninducedpotential

v̂ind(k) = χ(k)
[
v̂mc(k)

]2
. (21)

The final term in equation (19),

E0 = FOCP +
Nm

2
lim
r→0

vind(r) + ncNm lim
k→0

[
− z

2Z
v̂ind(k) + v̂mc(k) +

Z

2z
v̂cc(k)

]
(22)

is thevolume energy, which is a natural and inevitable consequence of the reduction to an
equivalent one-component system. Although having no explicit dependence on the macroion
positions (see below),E0 evidently depends on the average density of macroions and thus can
make a significant contribution to the total free energy of the system. It must be emphasized
that the above expressions for the effective pair potential and the volume energy are identical to
expressions derived from the pseudopotential theory of metals [19,22,24] if one substitutes for
FOCP andχ(k), respectively, the energy and linear response function of the uniform electron
gas, and for̂vmc(k) the electron–ion pseudopotential.

To summarize, thus far, starting from the primitive model of charge-stabilized colloids,
formally reducing the two-component macroion–counterion mixture to an equivalent one-
component system of pseudo-macroions, and applying a linear response approximation to
the counterion density, we have obtained expressions for both an effective electrostatic pair
interaction (equations (20) and (21)) and an associated volume energy (equation (22)). Practical
calculations still require specification of (1) the reference OCP free energyFOCP, (2) the OCP
linear response functionχ(k), and (3) the macroion–counterion interactionv̂mc(k). Below,
each of these is considered in turn.

It is important first to note that by associating the hard-sphere part of the total macroion–
counterion interaction with the counterion Hamiltonian (equation (3))—necessary, since
response theory does not apply to hard-sphere interactions—the reference OCP is confined
to the free volume between the macroion cores. As a consequence, the OCP is not strictly
uniform since, in principle, the boundary conditions may induce nonuniformity. Determining
the free energy of such a system in general poses a nontrivial task. In practice, however,
counterion densities are usually low enough that the OCP may be assumed to be essentially
uniform, except perhaps near contact with a macroion surface.

Now, for typical macroion charges and concentrations, the OCP is so weakly coupled
(unlike its electronic counterpart in metals) that its free energy is dominated by the ideal-gas
entropic component. Therefore, ignoring correlations between counterions [12, 14, 20], an
accurate approximation is

FOCP' kBTNc

[
ln(nc3

3)− 1
]
= kBTNc

[
ln

(
(Z/z)nm3

3

1− η
)
− 1

]
(23)

where3 is the thermal de Broglie wavelength andnm ≡ Nm/V is the average number density
of macroions, the last equality following from the constraint of global charge neutrality.

The linear response function is directly related to the corresponding static structure factor
S(k) via

χ(k) = −βncS(k) = − βnc

1− ncĉ(k)
(24)

where β ≡ 1/kBT and ĉ(k) is the Fourier transform of the direct correlation function
c(r). Specifyingχ(k) is therefore equivalent to specifyinĝc(k). For a weakly coupled
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OCP, a convenient and reasonable approximation forc(r) is given by the mean-spherical
approximation (MSA). This amounts to settingc(r) equal to its asymptotic (r → ∞) limit
c(r) ' −βvcc(r) for all r. As a result,

ĉ(k) ' −βv̂cc(k) = −4πβz2e2

εk2
. (25)

Substitution of equation (25) into equation (24) then yields [16]

χ(k) = − βnc

1 +κ2/k2
(26)

where

κ ≡
(4πncz

2e2

εkBT

)1/2
=
(

4πn(0)c z
2e2

(1− η)εkBT

)1/2

. (27)

As will be seen below, the parameterκ plays the role of an inverse screening length in the
counterion density profile and in the effective pair interaction.

Finally, specifying the macroion–counterion interaction amounts to determining the value
of the parameterα in equation (5) that will ensure a vanishing counterion density inside the
macroion cores. This in turn requires a calculation of the real-space counterion density profile,
the details of which are described in the next section.

3. Results

3.1. Counterion density profile

The real-space counterion density profileρc(r) may be determined from equations (5), (16),
and (26). First, Fourier transforming equation (5) yields

v̂mc(k) = −4πZze2

εk2

[
(1− α) cos(kσ/2) + α

sin(kσ/2)

kσ/2

]
. (28)

Next, substituting equations (26) and (28) into equation (16) gives the intermediate result

ρ̂c(k) = Z

z

(
κ2

k2 + κ2

)[
(1− α) cos(kσ/2) + α

sin(kσ/2)

kσ/2

]∑
R

exp(ik ·R) (29)

where the sum is over the positionsR of the macroions. For simplicity, we consider the density
profile around a single macroion located at the origin (R = 0), assuming all other macroions to
be far away (κR � 1). This is equivalent to retaining only theR = 0 term in the summation,
in which caseρ̂c(k) is a function only ofk andρc(r) is a function only of the radial distance
r. Now inverse Fourier transforming equation (29) yields

ρc(r) =


Z

z

κ2

4π

[
(1− α) cosh(κσ/2) + α

sinh(κσ/2)

κσ/2

]
exp(−κr)

r
r > σ/2

Z

z

κ2

4π

(
−1 +α +

α

κσ/2

)
e−κσ/2

sinh(κr)

r
r < σ/2.

(30)

Vanishing ofρc(r) for r < σ/2 is evidently ensured by setting

α = κσ/2

1 +κσ/2
. (31)

Finally, substituting this expression forα back into equation (30) gives the result

ρc(r) = Z

z

κ2

4π

(
eκσ/2

1 +κσ/2

)
e−κr

r
r > σ/2 (32)
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which is automatically normalized to the correct number of counterions per macroion (Z/z).
This expression for the counterion density profile around a single macroion is recognized to be
of precisely the same form as the Debye–Hückel expression for the density of electrolyte ions
around a macroion [1], whereκ is the inverse Debye screening length. A notable distinction
lies, however, in the definition ofκ. Whereas ourκ (equation (27)) depends on the average
effectivecounterion densitync in the volume unoccupied by macroions, the Debye–Hückelκ
depends rather on thenominalbulk density of electrolyte ions. The importance of redefining
the usualκ in this way—a result that emerges naturally from the response approach—has been
stressed also by Russel and co-workers [25].

In passing, two remarks are in order. First, determining the counterion density profile in the
presence of two or more closely spaced macroions will evidently require a more general form
for the macroion–counterion core interaction than the simple constant chosen in equation (5).
Second, it may be instructive to compare the macroion–counterion interaction with its metallic
counterpart, the electron–ion pseudopotential. A popular and successful form of the latter
is the empty-hole pseudopotential [26], which is Coulombic at long range but precisely zero
inside a certain core radius. In contrast, settingvmc(r) to zero forr < σ/2 would result in a
nonvanishing counterion density inside the macroion cores. A distinction between the metallic
and colloidal cases lies in the fact that, while counterions are strictly excluded from macroion
cores, electrons may at least partially penetrate metallic ion cores.

3.2. Effective pair interaction and volume energy

We are now in a position to derive the main results of the paper. Considering first the
effective electrostatic pair interaction between pseudo-macroions, we proceed by substituting
equation (31) into equation (28), obtaining

v̂mc(k) = −4πZze2

εk2

(
1

1 +κσ/2

)[
cos(kσ/2) + κ

sin(kσ/2)

k

]
. (33)

Next substituting equations (26) and (33) into equation (21) yields

v̂ind(k) = −2πZ2e2

εk2

(
1

1 +κσ/2

)2(
κ2

k2 + κ2

)[
1 + cos(kσ ) + 2κ

sin(kσ )

k
+ κ2 1− cos(kσ )

k2

]
.

(34)

Fourier transformation of equation (34) is a straightforward, if tedious, calculation, with the
result

vind(r) =


Z2e2

ε

(
eκσ/2

1 +κσ/2

)2 e−κr

r
− Z

2e2

εr
r > σ

−Z
2e2

2εr

(
1

1 +κσ/2

)2[
(2 +κσ)κr − 1

2
κ2r2

]
r < σ .

(35)

Finally, substituting equation (35) into the Fourier transform of equation (20), we obtain an
explicit expression for the real-space form of the effective electrostatic pair potential:

veff(r) = vmm(r) + vind(r) = Z2e2

ε

(
eκσ/2

1 +κσ/2

)2 e−κr

r
r > σ. (36)

This result is identical in form to the electrostatic part of the familiar DLVO effective
pair potential [5], which is usually derived from the Poisson–Boltzmann equation. The
only difference between our potential and the DLVO potential lies in the definition ofκ

(equation (27)), which here involves theeffectivecounterion densitync.
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The volume energy now may be explicitly determined from equation (22). It follows
immediately from equation (35) that

lim
r→0

vind(r) = −Z
2e2

ε

κ

1 +κσ/2
(37)

and from equation (34) that

lim
k→0

v̂ind(k) = −
(
Z

z

)2

v̂cc(0) +
4πZ2e2

εκ2
+
πZ2e2σ 2

ε

(
1

1 +κσ/2

)2(
1 +

2

3
κσ +

1

12
κ2σ 2

)
(38)

and also from equation (33) that

lim
k→0

v̂mc(k) = −Z
z
v̂cc(0) +

πZze2

2ε

(
1

1 +κσ/2

)(
1 +

1

6
κσ

)
. (39)

Substituting equations (37), (38), and (39) into equation (22), we obtain the following result
for the volume energy:

E0 = FOCP−Nm
Z2e2

2ε

κ

1 +κσ/2
−Nm

ZkBT

2z
. (40)

The first term on the right-hand side of equation (40) is the OCP free energy, discussed in the
previous section. The second term, which depends implicitly on the macroion density through
the parameterκ, may be given a physical interpretation as one-half the electrostatic energy
associated with a single pseudo-macroion, composed of a macroion surrounded by its own
screening cloud of counterions [12, 24]. The final term, corresponding to thek → 0 limit
in equation (22), contributes a density-independent constant to the free energy per macroion
and hence has no influence on thermodynamic phase transitions at zero salt concentration. At
finite salt concentration, however, the corresponding term cannot be ignored [13,14,21].

4. Discussion and conclusions

It is important to point out some limitations of the theory and the results presented above.
First of all, the assumption of linear response of the counterions is strictly valid only for dilute
suspensions of weakly charged macroions. Whether the linear response approximation remains
valid at higher concentrations—in particular, concentrations for which excluded-volume effects
begin to play a role—is an interesting and open question. In this regard, it may be worth noting
that Poisson–Boltzmann cell-model calculations [8] andab initio simulations [11] do support
the general form of the screened Coulomb pair potential at appreciable concentrations, albeit
with renormalized DLVO parameters. Secondly, by considering only electrostatic and hard
steric interactions, and ignoring short-range interactions between counterions and macroion
surfaces, the theory cannot address the possibility of condensation of counterions onto the
macroions and the consequences for effective macroion charges. Finally, no account is taken
of correlations between charge fluctuations, either on the macroion surfaces or in the density
distributions of counterions surrounding neighbouring macroions. For spherical macroions,
Monte Carlo simulations and cell-model calculations [27] suggest that such correlations make
only a small contribution to the total free energy, at least at low salt concentrations. On the
other hand, for rod-like macroions, correlated charge fluctuations may play a more significant
role [28].

In summary, by applying a linear response approximation to the counterions surrounding
charged monodisperse hard-sphere macroions in a colloidal suspension, we have derived two
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main results, namely an effective electrostatic pair interactionveff(r) (equation (36)) and an
associated volume energyE0 (equation (40)). The total free energy of the system is ultimately
the sum of the volume energy—whose physical origins are the counterion entropy and the
macroion–counterion interaction energy—and the free energy of the equivalent one-component
system of pseudo-macroions interacting via their effective pair interaction. Our expression
for veff(r) confirms that a linear response approximation, combined with the MSA for the
response function, yields the familiar DLVO form of pair potential for spherical macroions,
prefactors included†. This is not surprising, given that the DLVO potential also may be
derived by linearizing the Poisson–Boltzmann equation. At the same time, however, our
derivation indicates how excluded-volume corrections may be incorporated through the density
dependence of the inverse screening lengthκ, by substituting for the nominal counterion density
n
(0)
c theeffectivedensitync of counterions occupying the free volume between macroion cores.

Our expression for the volume energy, which quantitatively exhibits the dependence on
the macroion density, confirms the necessity of includingE0 in calculating thermodynamic
properties from the free energy [16]. In particular, the phase behaviour of deionized
suspensions of highly charged macroions has been shown to depend sensitively on the volume
energy [12–14,20]. Bulk pressure and elastic constants are expected to be similarly sensitive.
Furthermore, our expression forE0 is consistent with that obtained by van Roijet al [13] from
an alternative density-functional approach. The sole distinction is that our expression, which
involves the effective counterion densitync, incorporates excluded-volume corrections, at least
in an approximate fashion. Although not likely to be of significant consequence at the small
volume fractions considered in references [12] and [13], such effects may become important
at higher concentrations [20].

In conclusion, the linear response approach of Silbert and co-workers [16, 17] offers a
powerful tool for investigating effective electrostatic interactions in charge-stabilized colloidal
suspensions. As demonstrated here, a consistent extension to finite-sized macroions leads
directly to

(1) an effective pair interaction between pseudo-macroions having precisely the DLVO
screened Coulomb form, but with a modified inverse screening length that incorporates
excluded-volume corrections, and

(2) a density-dependent volume energy that can make a significant contribution to the total
free energy of salt-free suspensions.

By including the next higher-order response function (χ(2) in equation (15)), the approach
can be straightforwardly generalized to include thenonlinearresponse of microions and thereby
used to assess the importance of effective three-body interactions [11]. This is equivalent to
approximating the counterion free energy (equation (12)) in perturbation theory to third order
in the macroion–counterion interaction. An expression for an effective triplet interaction
already has been derived from a density-functional approach [29]. It remains, however, to
analyse the corrections that are entailed both to the volume energyand to the effective pair
interaction, and to explore the implications for thermodynamic properties. Experience from
ab initio simulations [11] and from the realm of metals [30] suggests that many-body effects
become significant at sufficiently high densities. Further outstanding issues are whether in bulk
the effective pair interaction always retains its screened Coulomb form, and whether near a
boundary the interaction can ever become attractive [15]. It is hoped that in future the response
approach may help to resolve these important issues.

† The present results correct the prefactor in the effective pair potential for finite-sized macroions given in reference
[16].
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Löwen H, Madden P A and Hansen J-P 1993J. Chem. Phys.983275
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